Британские ученые разработали методику превращения обычного сахара и углекислоты из воздуха в поликарбонаты и другие виды пластиков, что позволит в будущем отказаться от углеводородов при их производстве, говорится в статье, опубликованной в журнале Polymer Chemistry, пишет РИА «Новости».
«Численность населения Земли постоянно растет и вместе с ней растет и спрос на пластик. Наш „возобновляемый“ пластик — хорошая альтернатива для полимеров, синтезируемых из ископаемых углеводородов. Они дешевы и при этом хорошо разлагаются микробами, благодаря чему они не будут засорять океаны и сушу, как это делают их нефтегазовые „кузены“», — объясняет Антуан Бушар из университета Бата (Великобритания).
Сегодня на свалки Земли каждый год попадает примерно 300 миллионов тонн пластикового мусора, большая часть которого не разлагается почвенными микробами и остается в почти нетронутом виде на протяжении десятков и даже сотен лет. Многие частицы пластика попадают в воды мирового океана, где они проникают в желудки рыб и птиц и часто становятся причиной их гибели.
Бушар и его коллеги по университету предлагают бороться с этой проблемой, используя созданные ими методики синтеза пластмасс и полимеров, которые применяются сегодня для изготовления посуды, компакт-дисков, линз для очков и техники, а также прочих предметов быта.
Их методика синтеза позволяет «склеивать» молекулы простейших сахаров и углекислого газа и превращать их в одиночные звенья будущих полимерных молекул уже при комнатной температуре, не применяя для этого фосген и другие токсичные катализаторы, которые сегодня используются в промышленности при производстве подобных веществ. Эти молекулы, как показали дальнейшие эксперименты, могут сами по себе склеиваться в длинные цепочки без участия катализаторов или нагрева раствора.
Эти полимеры, так называемые поликарбонаты, хорошо разлагаются бактериями и их «углеводородные» версии уже сегодня используются в медицинской и пищевой промышленности для самых разных целей. Использование простых сахаров и СО2 из воздуха, в свою очередь, сделает их более доступными и позволит использовать подобные пластики в быту и на производстве в более широких масштабах.
«Свойства этих пластиков можно гибко менять, модифицируя структуру их молекул. К примеру, мы можем заставить клетки прилипать к нему, сделав его молекулы положительно заряженными. Это позволит применять структуры из такого вещества для выращивания искусственных тканей и органов, чем мы уже сейчас занялись», — заключает коллега Бушара по университету Джорджина Грегори.